ECMWF is building a world-leading, machine learning based probabilistic weather forecasting system (AIFS), to complement our existing physics-based system (IFS). We are pioneering the operationalisation of machine learning forecasting models in this domain. ECMWF now runs both deterministic and probabilistic AIFS forecasts daily, providing open data and products to users around the world. Within the Destination Earth initiative, AIFS workflows are being expanded towards an Earth-system model capturing land, ocean sea-ice and wave processes.
Data is the lifeblood of machine learning, with well-curated datasets being vital for learning accurate models. In this position you will play a leading role in the management of training datasets for machine learning models including the AIFS. You will manage machine learning datasets for ECMWF activities, such as for operational configurations, Destination Earth applications and ECMWF’s Member and Cooporating State undertakings. This involves liasing with users inside and outside of ECMWF, understanding the requirements for new datasets, and life-cycle management and curation of datasets between HPC systems across Europe.
This role is in the Data Archives and Dissemination Services Team of the Production Services Section. The team is responsible for archiving of operational and research data into the MARS archive and Fields DataBase (FDB) and the generation and dissemination of ECMWF’s products. The Production Services Section is responsible for the operational production services of ECMWF, including in the framework of DestinE and Copernicus services, working closely with teams across the organisation to maintain, develop and manage the operational forecasting systems and associated data services.
The European Centre for Medium-Range Weather Forecasts (ECMWF) is a world-leader in weather and environmental forecasting. As an international organisation we serve our members and the wider community with global weather predictions and data that is critical for understanding and solving the climate crisis. We function as a 24/7 research and operational centre with a focus on medium and long-range predictions, holding one of the largest meteorological data archives in the world. The success of our activities builds on the talent of our scientists and experts, strong partnerships with 35 Member and Co-operating States and the international community, some of the most powerful supercomputers in the world, and the use of innovative technologies and ML across our operations.
ECMWF has also developed a strong partnership with the European Union and has been entrusted with the implementation and operation of the Climate Change and Atmosphere Monitoring Services of the EU Copernicus Programme. We also contribute to the Copernicus Emergency Management Service. Other areas of work include High Performance Computing and the development of digital tools that enable ECMWF to extend provision of data and products covering weather, climate, air quality, fire and flood prediction and monitoring.
ECMWF is a multi-site organisation, with a main office in Reading, UK, a data centre/ supercomputer in Bologna, Italy, and a large presence in Bonn, Germany. We appreciate the need for flexibility in the way our staff work. We have adopted a hybrid work model that allows flexibility to staff to mix office working and teleworking, including away from the duty station for up to 10 days/month (within the area of our member states and co-operating states).
See www.ecmwf.int for more info about what we do.
ECMWF is one of the three entities entrusted to implement the DestinE initiative of the European Commission, alongside with ESA and EUMETSAT as partners. DestinE aims to deploy several highly accurate thematic digital replicas of the Earth, called Digital Twins. The Digital Twins will help monitor and predict environmental change and human impact, in order to develop and test scenarios that would support sustainable development and corresponding European policies for the Green Deal. ECMWF is responsible for the delivery of these digital twins and of the Digital Twin engine, the software infrastructure needed to power them of some of Europe’s largest supercomputers, those of the European HPC Joint Undertaking (EuroHPC).
The second phase of DestinE covers the period June 2024 – May 2026, and future phases are foreseen (subject to funding). Phase 2 will focus on early operations with consolidation, maintenance, and continuous evolution of the DestinE system components developed in the first phase. There will also be an enhanced focus on ML activities, including the deployment of workflows of components of a ML model for the Earth system, optimisation of the Digital Twin Engine to enable efficient model training and simulations, and other activities. One key element of the ML activities in phase 2 includes training. This shall build on recent ML training initiatives at ECMWF, including the Massive Open Online Course (MOOC) on ML for Weather and Climate.
(see https://learning.ecmwf.int/course/index.php?categoryid=1)
For more information on DestinE, see https://ec.europa.eu/digital-single-market/en/destination-earth-destine and https://www.ecmwf.int/en/about/what-we-do/environmental-services/destination-earth
The following skills and experience would be an advantage. However, you are encouraged to apply even if you feel you don’t precisely meet all the requirements.